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Environmental variability is an important risk factor in rural agri-
cultural communities. Testing models requires empirical sampling
that generates data that are representative in both economic and
ecological domains. Detrended correspondence analysis of satellite
remote sensing data were used to design an effective low-cost
sampling protocol for a field study to create an integrated socio-
economic and ecological database when no prior information on
ecology of the survey area existed. We stratified the sample for the
selection of tambons from various preselected provinces in Thai-
land based on factor analysis of spectral land-cover classes derived
from satellite data. We conducted the survey for the sampled
villages in the chosen tambons. The resulting data capture inter-
esting variations in soil productivity and in the timing of good and
bad years, which a purely random sample would likely have
missed. Thus, this database will allow tests of hypotheses concern-
ing the effect of credit on productivity, the sharing of idiosyncratic
risks, and the economic influence of environmental variability.

Thailand � sample stratification � correspondence analysis �
economic risk � soil

We use satellite land-cover information, specifically Landsat
Thematic Mapper (TM) reflectance data, and the results of

detrended correspondence analysis (DCA) applied to individual
political units to determine whether or not to stratify the sampling
of an otherwise random sample of villages. Because surveys typi-
cally have sample sizes that are a relatively small fraction of the
sampling universe, purely random selection may miss important
ecological variation.

An efficient sampling design should capture interesting varia-
tions among villages to be surveyed in a least-expensive way. Our
sampling protocol is based on analysis of Landsat TM imagery of
Thailand, which defines one domain of environmental variation.
The goal was to select subcounties, or tambons, as the sampling unit
for the usual logistical advantage of a clustered survey. (A tambon
is a political division smaller than a county that consists of 4–12
villages). A single Landsat scene consists of �6,000 � 6,000 30-m
square ‘‘pixels,’’ each of which reflects energy from multiple bands
of the electromagnetic spectrum. By using pattern recognition
methods, each pixel is classified as belonging to one of 25 spectral
classes interpreted as land-cover classes. The frequency distribution
of the spectral classes in each subcounty is extracted.¶ DCA is
applied to estimate a few latent factors that drive most of the
observed variations in land-cover classes within subcounties. Based
on these ‘‘site scores,’’ this study identifies patterns of clusters of
subcounties in three of four provinces, motivating stratified samples
in those provinces. Prior knowledge indicates that the stratification
is determined by whether subcounties are forested or nonforested.

The subsequent integrated socioeconomic and ecological survey
confirms the usefulness of the stratification. Soil samples show that
variations in soil productivity are captured successfully by forest
versus nonforest strata. The spatial ecological variation encoded in
the site scores is also related to the timing of good and bad shocks
as recorded in (retrospective) field interviews. Thus, the stratified

sampling is useful for constructing a dataset that forms the input to
the next phase of the research: to test economic models of credit
arrangements and their implications for income growth and in-
equality and to examine the relationships between environmental
variation and economic conditions.

Economic Models and Desired Features of the Sample
Economic models suggest testable hypotheses about growth of
aggregate income, inequality in the distribution of income, and
uneven access to financial services of various types. The models
determine what data would be necessary for such tests.

Although technology may be a way to overcome poor environ-
ments, technology also has budget implications. For example,
synthetic fertilizers can easily be applied in an area of poor soils to
increase crop yields, but synthetic fertilizers cost money [in some
cases, fertilizers have become the largest direct production cost (1)].
Many farmers cannot afford to buy fertilizers without loans. One
class of models suggests that investment and�or credit may be
limited or nonexistent for small businesses or cash-intensive farm-
ers. Banerjee and Newman (2), Aghion and Bolton (3), and
Bernhardt and Lloyd-Ellis (4) suggest that investment and credit
will vary with wealth because of either limited collateral or weaker
incentives for working.

The general weakness of these models in applying them to Thai
rural areas is that they postulate a mostly uniform production
function, yi � f(ki, ni, mi), for household i, a mapping of inputs of
capital ki, labor ni, and raw material mi to the output yi, not
incorporating environmental variation. Output of a given entre-
preneurial farmer could be low not because wealth or assets are low
(that is, not because credit-financed inputs are low) but rather
because the land of that farmer is relatively unproductive. In short,
tests of the credit–wealth nexus should control for the technology
in use. Ideally a sample would contain measured variation in the
technology; for example, a production function yi � f j (ki, ni, mi)
allowing variation in soil productivity of types j.

This theory leads in turn to the design of socioeconomic instru-
ments and environmental measurements for field study, focusing
primarily on households and small businesses in rural or semiurban
communities.

Another class of theoretical models of growth with inequality and
uneven financial deepening emphasizes the role of risk and poten-
tially limited means of reallocating that risk. Risk in agricultural
communities is often environmental, e.g., floods, droughts, insect
outbreaks, and soil degradation. Greenwood and Jovanovic (5)
argue that access to commercial banks and the formal financial

Abbreviations: TM, thematic map(per); DCA, detrended correspondence analysis; CEC,
cation exchange capacity; OM, organic matter content; FC, field capacity; FN, foliage
nitrogen.

§To whom correspondence should be addressed. E-mail: rtownsen@uchicago.edu.

¶The procedure of assigning each pixel to 25 classes and counting the number of pixels
belonging to each class for each tambon reduces the dimension of the matrix from 7 � no.
of pixels to 25 � no. of tambons.
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system allows sharing of idiosyncratic risks (risks specific to house-
holds, e.g., local pests) but that aggregate shocks, such as wide-
spread drought, are not ameliorated. To test whether such risk-
sharing is better for those in the financial system (e.g., those with
access to commercial credit), one needs a sample in which not all
shocks are aggregate shocks, i.e., not everyone has bad or good
yields at the same time.

For example, suppose that the production function has the form
of yi � �i���f j(ki, ni, mi), where the �i are idiosyncratic shocks that
affect only household i and � is the aggregate shock that affects
everyone in the same region. The other terms in the equation are
as above.

From this specification of the production function, we can derive
the exact regression equation to test the ‘‘full’’ risk-sharing hypoth-
esis �ci � �I � ��Ii � ei, where �ci is change in the consumption
of household i, �I is a latent factor capturing common variation in
consumption over households induced by variation in aggregate
shock �, and �Ii is a latent or measured factor capturing idiosyn-
cratic variation in income of household i induced by idiosyncratic
shock �i. First differences have the advantage of eliminating indi-
vidual fixed effects. In this test, coefficient � should be zero if
variation in �i were completely shared. If a sample were stratified
by variations in land cover (e.g., crops or soil characteristics), then
one would be more likely to collect data in which not all variation
in income is attributable to a common shock or fixed effect. (Note
that for this particular application, crop choice and input use can be
endogenous; all that is needed is variation in net incomes.) Thus,
one could test whether � � 0 (for this test and others in levels see
refs. 6–9).

The fundamental question for the sampling protocol to deter-
mine based on prior information is whether there are any areas that
are ecologically distinct from other areas. If there are distinct
environmental zones within a sampling area, then some, if not all,
of the zones should be sampled to assure a representative sample
of each. We want to ensure that not all variation is associated with
common factor �I, or, in the case of heterogeneity in production,
that there are sufficient representatives from each subset of zones
to estimate the various technologies, f j. Samples stratified by zones
and then chosen randomly within zones are a feasible option. If, on
the other hand, there are no evidently distinct environmental zones,
then a totally random sample is the simplest to administer and the
most likely to achieve representative variability. Prior information
on both environmental and economic variables is necessary to
determine the need for stratification. Unfortunately, however, there
are no existing land-cover maps at the provincial or larger scale that
can be used, so we must create our own land-cover maps by using
satellite imagery.

In the process of designing the sampling strategy, we were
reminded that there is little that is free from human intervention.
The application of fertilizers can affect soil quality, which in turn
can alter vegetation and, thus, reflectance. More generally, the
distribution of earth surface covered by water can be affected by the
construction of dams, canals, and reservoirs. Thus, the sampling
scheme stratifies on areas that are likely to be different environ-
mentally, which needs to be confirmed in field research, and is one
reason why we restrict ourselves to conservative measures of fertility
and conservative sampling strategies. Fortunately, tests of the
risk-sharing hypothesis are not sensitive to the endogeneity of
income.

Derivation of Land-Cover Classes
Landsat TM scenes were acquired from the data archives of the
U.S. Geological Survey’s EROS Data Center. TM scenes cover
180 � 175-km regions with the resolution defined on the ground
by 30-m pixels and measure each pixel’s reflectance in seven
bands of the electromagnetic spectrum (blue, green, red, near
infrared, midinfrared, a second midinfrared, and emitted energy
in a thermal infrared band). Scenes were chosen to be as

cloud-free as possible and to cover as much of the spatial extent
of the preselected provinces� as possible. We used TM scenes
from November 25, 1990, for the province of Sisaket (World
Reference System-2, path 127, rows 49 and 50) and January 20,
1989, for the province of Lopburi (World Reference System-2,
path 129, rows 49 and 50). These scenes were the most cloud-free
TM scenes of the study areas of the entire data archive (see Fig.
1 for the composite images of Lopburi province with tambon
boundaries overlaid). Tambon boundaries were identified on
existing commercial maps (1:50,000 scale) and digitized onto
vector geographic information system files by using MAPINFO
PROFESSIONAL 6.0. For the other two provinces, Chacherngsao
and Buriram, one would have to use scenes from two different
orbital paths, with data acquired on different days. Unfortu-
nately, none of the combinations of the available data allowed us
to conduct adequate image normalization and mosaicing tech-
niques for these two provinces because of the different pheno-
logical periods (dates of different vegetation development lev-
els), levels of cloud cover, and other problems with atmospheric
conditions. Thus, the analysis of imagery here is restricted to
Sisaket and Lopburi.

We applied the unsupervised land-cover classification algo-
rithm ISODATA (10) to each of the two provinces with usable
satellite imagery by using the software ERDAS IMAGINE, Versions
7.4, 8.3 and 8.4 (Leica, Deerfield, IL). ISODATA is a self-
organizing pattern-recognition method that iteratively groups
imagery pixels by their similarities in multidimensional space
defined by reflectance values in the seven radiometric bands
recorded by the TM instrument. As a result of this analysis, we
can assign each pixel on the ground of each province into a
land-cover class. A class is defined to be an entity such that
members of a class are quantitatively similar to one another in
terms of the seven-dimensional (band) reflectance spectrum and
are different from members of other classes. After experimen-
tation to determine the optimum number of classes, 25 spectral
classes were most representative of spatial variability, which is a
somewhat arbitrary number of classes. Specifying �30 land-
cover classes in the ISODATA function resulted in many of the
classes containing a very small number of cells, and �20 classes
resulted in classes with large variances that overlapped other
classes in most of the bands.

We identified the land-cover of each tambon separately by
overlaying the digitized tambon boundaries onto the results of
the land-cover classification. Fig. 1 also shows a larger-scale
image of several Lopburi tambon boundaries superimposed on
the land-cover data. We counted the number of pixels belonging
to each land-cover class within each tambon. In an ecological
survey, these land-cover composition data are analogous to
species composition data; for this survey, however, they are
analogous to land-cover classes in subcounties. Fig. 2 Right shows
the frequency distribution of 25 land-cover classes in the four
tambons shown in Left. Silatip seems to be somewhat different
from the other three because it has little of land-cover classes 23
and 24 (probably recently harvested paddy fields denoted by light
yellow and purple on the image) but much more of classes 2, 6,
and 10 (perhaps unharvested agricultural fields denoted by
shades of green on the image). Ban Mai Samakkee and Chai
Narai are somewhat similar to one another. Yang Rak represents
another outlier because of the preponderance of land-cover
classes 23, 24, and 14 (possibly paddy fields ready for harvest and
denoted by brown on the image). Yang Rak and Silatip are quite

�Funding from the National Institute of Child Health and Human Development and the
National Science Foundation was in place with precommitment to survey four provinces:
two provinces, Chacherngsao and Lopburi, in the central region and two provinces,
Buriram and Sisaket, in the northeast region.
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similar in the relative abundances of classes 6, 10, 12, and 14,
which are dominant classes.

Ordination: DCA. By applying DCA (11) to the observed tambon
level distribution of land-cover classes, we estimated the latent
factors associated with each tambon, called site scores. DCA is
a technique often used by ecologists to identify latent factors that
drive observed variation in the composition of species across
different sites. Here, tambon is the unit for sites, each of the 25
land-cover classes is seen as a species, and the number of pixels
belonging to a particular land-cover class in a given tambon is
treated as the observed population of a species in that tambon.
The DCA algorithm constructs an iterative weighted average,
starting with arbitrary initial site scores, where weights are the
land-cover composition data. If the distribution of land-cover
composition data are unimodal, the iteration is guaranteed to
converge to a unique set of values and assign site scores for each
tambon. By making use of an orthogonality condition, repeated
use of the same algorithm can generate as many latent factors
(site scores) as we want.

Because we want to know the within-province variation in the
environment to determine the selection of subcounties for each
province, we applied DCA to each province separately. (Note
that an identified land-cover class in one province from one
image is not comparable to the land-cover class in the other
province.) The software used was CANOCO 3.1 and CANOCO for
Windows, Version 4.0 (12).

Results of DCA Analysis, Sampling, and the Survey. Taking several
precautions is necessary when designing the sampling strategy
based on the DCA results. First, it is difficult to know what the latent
variables (DCA site scores) represent without ground-survey in-
formation. Second, a stratified sample requires reweighting if the
analysis is to be taken as representative of the larger universe. Third,
a purely random selection is most likely to deliver a database that
allows for multiple uses, some of which are not envisioned in
advance. With these drawbacks in mind, we limit ourselves to a
conservative strategy, i.e., purely random selection with stratifica-
tion based only on salient DCA factor scores with a known
interpretation.

The DCA site scores of all tambons in Lopburi are shown in
Figs. 3 and 4, and the scores for Sisaket are shown in Figs. 5 and
6. The first two latent factors (or site scores) jointly account for
70% and 76%, respectively, of the total variation of the land-
cover distribution of the two provinces. Lopburi tambons are
scattered evenly in DCA factor space. The variation is somewhat
continuous, and no clusters can be considered as outliers and
identified a priori. Under our conservative strategy, this result
suggests that tambons in Lopburi should be sampled with a
simple, entirely random design.

In Fig. 5, a cluster of outlier tambons in DCA Axis 1 stands
out. These six outlier tambons were all located in the southeast-
ern part of the province on the Cambodian border and had large
areas of forest. This pattern suggests stratification based on
forested versus nonforested tambons, then sampling to assure

Fig. 1. Composite images for Lopburi with subcounty boundaries overlaid. The composite image was created by assigning the reflectance values for bands 4
(near infrared), 3 (red), and 2 (green) to the red, green, and blue color components of the image.

Fig. 2. Twenty-five land-cover class images of several individual subcounties in Lopburi. The 25 land-cover classes are indicated by distinct colors but are not
named.

Binford et al. PNAS � August 3, 2004 � vol. 101 � no. 31 � 11519
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representation of each of these two strata. Preliminary field
research confirmed the existence of forest on the border and
failed to uncover other salient variation that might account for
different DCA scores. Although we did not use Landsat data to
analyze land cover in Buriram and Chacherngsao, we identified
forested areas from both composite images made from the
Landsat data and 1:50,000 scale Royal Thai topographic quad-
rangles. We also chose a subset of forested tambons in the two
provinces accordingly.

To summarize, in Lopburi, where there is no forested area, all
of the 12 tambons were selected purely at random. The proba-
bility of each tambon being selected is 1�no. of tambons in
Lopburi, or 12�117. In Sisaket, Buriram, and Chacherngsao, two
tambons were selected at random from the set of forested
tambons, or 2�6, 2�8, and 2�4, respectively. The remaining 10
nonforested tambons were selected with probabilities 10�153,
10�160, and 10�85, respectively.

Four villages were randomly selected from each of the
chosen tambons, and 15 households were then randomly drawn
from each of the selected villages. Trained enumerators in-
terviewed not only all of the households chosen in the sample
but also all of the headmen and all of the managers of the
formal and informal village-level organizations of the chosen
villages. In addition, soil samples, vegetation samples, photo-
graphs, and plant community descriptions were taken for a
plot belonging to each of 10 households randomly chosen from
the 15 households of each village. See the Townsend Thai

Project web site (http:��cier.uchicago.edu�intro.htm) for de-
tailed descriptions of the chosen sample; survey instruments,
including the 1997 text on the questionnaire design; and the
logistics of the survey.

Evaluation of Sampling Design
In this section, we evaluate with the gathered data whether the
stratified sample has delivered a database desirable for our
integrated socioeconomic and ecological research. The statisti-
cal analyses in this section were conducted with SAS 8.0 and
STATA, Versions 5.0 and 6.0 for Windows.

Soil Variation, the Chosen Sample, and DCA Site Scores. Soil char-
acteristics, such as cation exchange capacity (CEC), organic
matter content (OM), field capacity (FC), pH, and foliage
nitrogen (FN), are with the exception of FN conservative (i.e.,
they do not change; the properties are conserved or they
change very slowly with disturbances, such as agricultural
activities or climate change) indicators of soil fertility, and
higher values of each variable generally indicate more fertile
soil (13). We analyzed the soil samples to measure those
characteristics. For laboratory methods of soil analysis, see
refs. 14–16. Soil samples were analyzed in the laboratory at the
Department of Soil Science, Kasetsaat University, under the
supervision of Professor Irb Keorhumramne.

These data allow us to assess how well the forest versus nonforest

Fig. 3. Plot of first and second DCA site scores for Lopburi. The circled dots
in the plot show DCA site scores for the sampled tambons.

Fig. 4. TM of first DCA site scores for Lopburi. The stars on the TM show the
geographic location of the sampled tambons.

Fig. 5. Plot of first and second DCA site scores for Sisaket. The circled dots in
the plot show DCA site scores for the sampled tambons.

Fig. 6. TM of first DCA site score for Sisaket. The stars on the TM show the
geographic location of the sampled tambons.

11520 � www.pnas.org�cgi�doi�10.1073�pnas.0402593101 Binford et al.
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stratification strategy captures variation in soil productivity. We can
determine whether soil characteristics are consistently different
between the forest and nonforest areas by including a forest dummy
variable in the following regression equation:

Si � a � b1Regioni � b2Foresti � b�TDTi � �i. [1]

Here, Si is a soil characteristic of the plot of household i; Regioni
is a region dummy equal to 1 if the plot of household i is in the
central region and 0 otherwise; Foresti is a forest dummy equal
to 1 if the plot of household i is in a forest area and 0 otherwise;
and DTi are dummies for the tambon of household i. All of the
regressions in this paper are done by the software INTERCOOLED
STATA 7. This software automatically checks for muticollinearity
when there is more than one dummy variable in the equation.
When multicollinearity is detected, the software corrects the
equation by dropping out some dummies. We confirmed that the
software dropped some tambon dummies properly.

As shown in Table 1, soil characteristics are significantly related
to forest dummies in all but one case. The exception has to do with
pH and can be overturned by including tambon controls. The
regression results indicate that CEC, OM, and FC are lower in
forested tambons, so we may say that, in general, the forested
tambons have less fertile soil. Although we do not report them here,
these results do not change, even if we run the regressions sepa-
rately for each province. Variations in soil productivity are captured
successfully by forest versus nonforest strata.

To describe the relationship between DCA site scores and soil
characteristics, we ran the following regression equation:

Si � a � b1DCA1i � b2DCA2i � b�TDTi � �i, [2]

where DCA1i is the first and DCA2i is the second DCA site score
for the tambon of household i.

The regression coefficients indicate that in Sisaket the tam-
bons with higher first site score, DCA1, tend to have lower values
of CEC, OM, FC,** and FN (Table 1). The second site score,
DCA2, on the other hand, is significantly positively related to
pH, CEC, OM, FC, and FN, although the significance of DCA2
is lost with tambon controls. More generally, as is evident from

the TM in Fig. 5, DCA1 increases as one moves from south to
north. Now with the soil data in hand, we might contemplate
more extensive stratification along the DCA1 axis.

In Lopburi, although we do not report it in detail here, DCA1
is positively and significantly related to all measures of fertility
and DCA2 is positively related, except for CEC. As can be seen
from the TM in Fig. 3, DCA1 values are geographically clustered.
Again, with the soil fertility interpretation in hand, one might
have contemplated some kind of stratification on DCA1 values.
We emphasize, however, that we did not have the soil measure-
ments before choosing the sample and conducting the survey.

Idiosyncratic Shocks, the Chosen Sample, and DCA Site Scores. An-
other major objective of the overall research program is to test
hypotheses regarding an optimal allocation of risk bearing. As we
described earlier, the sample must exhibit a variety of shocks, so that
not all shocks are aggregate shocks. To evaluate whether our sample
has the necessary mix of shocks, we examined whether the timing
of good or bad shocks to villages is related to spatial ecological
variation captured by the DCA scores. Answers by village headmen
to questions about the history of good and bad years were used as
dependent variables in separate regressions. The questions were,
Which was the best year in the last 5 years? The worst year in the
last 5 years? The best year ever? and The worst year ever?
Responses were coded as the Thai year [e.g., anno Domini 2000 is
2543 BE (Buddhist Era) in Thailand]. Of course, we did not have
actual panel data to confirm the answers about past history.

We regress the timing of shocks onto forest dummies (1 �
forested, 0 � nonforested) first by pooling all four provinces but
controlling for regional fixed effects and then separately for each
of the three provinces with forest areas. The regression results
for Sisaket are reported in Table 2. We may infer from the
regression coefficients that Sisaket’s forest tambons tend to have
had good and bad years within the last 5 years but that the worst
historical events have happened closer to the present than the
past. For Buriram, another survey province in the northeast
region, regressions results (data not shown) indicate that forest
dummies do matter there: Forested tambons in Buriram tend to
have had the worse historical events more recently. However, for
Chacherngsao, in the central region, forest dummies do not
matter to the time of arrival of good and bad shocks.

Again, one may wonder whether the DCA site scores have
anything to do with the timing of good and bad shocks in the survey
areas. To describe the relationship of DCA site scores with the
timing of good and bad shocks in the survey areas, good and bad
years within the last 5 years or over historical memory are regressed

**Apparently, there is an inconsistency in the regression results with forest dummies and
DCA site scores: coefficients on forest dummies indicate that the forest areas have less
fertile soil, whereas coefficients on DCA1 indicate the contrary. Further research is
required to resolve this inconsistency. Our conjecture as of now is that soil quality may
have been influenced by human intervention, such as the application of fertilizers to
compensate for poor soil.

Table 1. Soil characteristics, forest dummies, and DCA site scores

pH CEC OM FC FN

Without With Without With Without With Without With Without With

All four provinces
Region dummy 0.85* 0.31† 21.89* 24.05* 1.82* 2.71* 14.75* 17.88* 0.89* 0.32
Forest dummy 0.05 0.71* 	9.16* 	29.37* 	0.29* 	1.72* 	6.64* 	25.25* 0.52* 1.17*
F statistic for tambon dummies — 72.79* — 67.56* — 30.38* — 66.73* — 13.47*
Constant 5.21* 4.49* 6.01* 33.74* 0.65* 0.69* 14.48* 21.22* 1.97* 1.98*
Adjusted R2 0.130 0.720 0.401 0.791 0.482 0.716 0.478 0.816 0.191 0.402

Sisaket
First DCA site score 0.06 	0.11† 	0.46* 	0.83* 	0.12* 	0.20* 	0.27 	1.51* 	0.14* 	0.07
Second DCA site score 0.43* 0.11 0.97‡ 	0.17 0.21* 0.04 2.95* 0.58 0.53* 0.125
F statistic for tambon dummies — 4.98* — 20.56* — 15.44* — 20.93* — 9.72*
Constant 4.61* 6.68* 2.98* 4.37* 0.70* 0.90* 10.48* 14.37* 1.61* 1.94*
Adjusted R2 0.037 0.134 0.035 0.303 0.050 0.260 0.303 0.303 0.068 0.207

For all four provinces, the following number of observations were made for each measurement: pH, 1,572; CEC, 1,573; OM, 1,573; FC,
1,573; and FN, 1,554. For Sisaket province, the following number of observations were made for each measurement: pH, 410; CEC, 410;
OM, 410; FC, 410; and FN, 401. Without, without tambon dummies; with, with tambon dummies.

*, Statistical significance at 1% level; †, statistical significance at 10% level; ‡, statistical significance at 5% level.
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onto the first and second DCA site scores for the two changwats of
Lopburi and Sisaket by using region and tambon dummies as
controls to define the added effect of land-cover itself. In Table 2,
the regression results for Sisaket are reported. The results imply that
the tambons with higher DCA1 and DCA2 scores had the best and
worst years ever in the more remote past and, therefore, knowing
the regional DCA patterns, that the best and worst shocks ever
happened more recently in the forest tambons of Sisaket. In the
regressions for Sisaket of the best and worst shocks in the last 5
years, DCA1 and DCA2 provide a significant explanation with
exceptions. We may infer, with caution, that tambons with a higher
DCA1 score are likely to have had good or bad years within the last
5 years more recently. Overall, the results are consistent with the
regressions with forest dummies.

We have subsequently created an annual household panel for
one-third of the original sample, from 1997–2001. By regressing
household income changes onto DCA scores, we find that
households in tambons with higher DCA2 values in Sisaket had
a significantly higher income change from 1999–2000 and a
significantly lower income change from 1997–1998, and, thus,
vice versa for tambons with lower DCA2 values. These data
indicate that even further initial stratification with the DCA
scores would appear to have increased the likelihood of obtain-
ing the desired idiosyncratic shocks in the sample.

On the contrary, similar regressions for Lopburi show that
DCA site scores hardly have any significant relationship with the
timing of shocks. This finding implies that in Lopburi the sample
would not have captured idiosyncratic shocks even if we had
stratified the sample according to DCA site scores.

Discussions and Conclusion
The analysis with the data gathered in the survey confirms that
soil fertility is significantly different across forest and nonforest
areas. Thus, the stratified sample succeeded in generating a

database that allows us to dissect the wealth, credit, fertilizer,
and income nexus as in the first group of models of growth and
inequality described in Economic Models and Desired Features of
the Sample. These data may be applied to a study of the
contribution of financial institutions, such as village funds, the
Bank for Agriculture and Agricultural Cooperatives, and com-
mercial banks to household income, as well as the effects of the
changing economic conditions on land-use and land-cover
changes.

The timing of good and bad shocks was also significantly
different between forested and nonforested tambons in the
northeast region (the provinces of Buriram and Sisaket). If we
had not stratified by the forest tambons, we believe we would
have lowered the likelihood of generating a sample in which
idiosyncratic shocks could be studied. Such a sample is necessary,
of course, for testing the second group of models of income
growth and inequality outlined in Economic Models and Desired
Features of the Sample.

We could not have known the order of magnitude of these results
on fertility and timing of shocks beforehand, when we designed the
sample. However, others may be encouraged by our results and
might contemplate bolder stratification strategies on the DCA axes.
Here, we suggest the more modest point that satellite remote
sensing data and analysis are a relatively inexpensive way to discover
variation in the environment that can inform the design of the
sampling scheme. When comparable remote sensing data are
available for regions or an entire country, their use in sampling
schemes can be even more comprehensive.
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Table 2. Timing of shocks, forest dummies, and DCA site scores for Sisaket province

Best year in
last 5 years Best year ever

Worst year in
last 5 years Worst year ever

Sisaket Without With Without With Without With Without With

Regression with forest dummies
Forest dummy 	0.99* 	0.83 8.94† 6.583‡ 	1.32‡ 	0.50 14.81† 10.83‡

F statistic for tambon dummies — 1.66 — 0.71 — 1.16 — 1.98
Constant 20.39† 2.33† 3.70† 6.67* 13.22* 3.00† 7.48† 5.50
Adjusted R2 0.090 0.214 0.347 0.475 0.062 0.095 0.290 0.417

Regression with DCA scores
First DCA site score 0.42* 0.58* 	3.15† 	3.46† 0.56‡ 0.69 	5.72† 	9.00†

Second DCA site score 	1.12† 	0.92‡ 	1.90† 	4.70‡ 	0.50 	0.86 	0.16† 	7.66
F statistic for tambon dummies — 0.44 — 1.97‡ — 0.90 — 2.17‡

Constant 2.43† 2.29† 12.63† 17.40† 2.21* 2.23‡ 19.23† 33.57†

Adjusted R2 0.295 0.199 0.213 0.346 0.063 0.043 0.222 0.369

For the regression with forest dummies, the following number of observations were made for each measurement: best year in last
5 years, 44; best year ever, 45; worst year in last 5 years, 46; worst year ever, 47. For the regression with DCA site scores, the following
number of observations were made for each measurement: best year in last 5 years, 40; best year ever, 41; worst year in last 5 years, 42;
worst year ever, 43. The number of observations in these regressions is not exactly 48 because some village headman refused to answer
the question or answered that they had no particularly good or bad years. *, statistical significance at 5% level; †, statistical significance
at 1% level; ‡, statistical significance at 10% level. Without, without tambon dummies; with, with tambon dummies.

11522 � www.pnas.org�cgi�doi�10.1073�pnas.0402593101 Binford et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
29

, 2
02

1 


